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1. Introduction

The purpose of this note is to give a simple explanation for a successful prediction of the

AdS/CFT correspondence, concerning the renormalization group flow triggered in a large

N CFT by a “double-trace” perturbation [1 – 3].1 A d-dimensional conformal field theory

perturbed by a relevant deformation of the form fO2, where O is a “single-trace” operator

of dimension ∆− < d/2, flows in the IR to another conformal fixed point [1]. At large

N , the IR theory is simply related to the UV theory — by a Legendre transformation

with respect to the source for the operator O [3]. In particular the conformal dimension

of O flows from ∆− in the UV to ∆+ = d − ∆− in the IR. This phenomenon has a

holographic counterpart in (d + 1)-dimensional Anti-de Sitter space, as the flow between

different boundary conditions for the bulk field φ dual to O [1]. The boundary conditions

preserve AdS isometries (i.e., conformal invariance) only at the extrema of the flow, where

they correspond to the two roots ∆± in the usual AdS/CFT formula ∆(∆ − d) = m2, m

being the mass of the scalar field φ. The variation of the central charge cUV − cIR is a

next-to-leading effect (of order O(1)) in the large N expansion. It can be determined in

the boundary CFT by an explicit mode sum [3], and in the bulk AdS theory by a one-loop

1Multitrace deformations were introduced in the context of AdS/CFT in [4]. The correspondence be-

tween multitrace deformations of the boundary theory and boundary conditions in the bulk was understood

in [1, 5] and further explored in e.g. [6 – 10, 2, 11, 3, 12 – 19].
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evaluation of the effective potential for φ [2]. The two calculations, while superficially quite

different, are in perfect agreement. What is remarkable is the universality of this agreement,

which holds for arbitrary spacetime dimension d, arbitrary conformal dimension ∆−, and

independently of supersymmetry [3]. This seems to call for a more direct explanation.

Indeed, we find that the bulk and boundary calculations can be cast in a way that makes

their equivalence manifest. Both in the boundary and in the bulk, evaluation of the central

charge amounts to isolating the logarithmically divergent term of the partition function —

this is a UV divergence in the boundary, and an IR divergence in the bulk, consistent with

the familiar UV/IR connection. The bulk and boundary partition functions are appropriate

functional determinants, evaluated respectively in the space of bulk and boundary fields.

In essence, we are able to write the bulk functional determinant in a way that makes

it obviously identical to the boundary functional determinant. Our methods should be

applicable to more general backgrounds, for example AdS black hole backgrounds, where

the bulk partition function corresponds to the thermal partition function of the boundary

theory. They may also shed light on “designer gravity” [20], where a similarly universal

bulk/boundary correspondence should find a more intrinsic explanation. Our result is

similar in spirit to the recent understanding of “τRR-minimization” [21] as the boundary

dual of the bulk procedure of “Z-minimization” [22]: once the dust settles, the bulk and

boundary calculations are seen to be isomorphic step by step. Of course, not all entries of

the AdS/CFT dictionary are explained by such direct, purely kinematic mechanisms. But

when they are, it seems worthwhile to spell out these mechanisms in detail.

We also take the opportunity to clarify the prescription to compute AdS/CFT corre-

lators with the ∆− choice of boundary conditions. In section 5 we explain in diagrammatic

terms how the ∆− boundary conditions for the AdS propagators lead automatically to the

Legendre transform recipe postulated in [23]. Finally, an appendix reviews the bulk calcu-

lation of Gubser and Mitra [2], with a slight modification of the regulator method, which

allows us to check the assumption in [2] that cUV = cIR at the Breitenlohner-Freedman [24]

bound.

2. Boundary: RG flow triggered by a double-trace deformation

To make this paper self-contained, we briefly review in this section the field theoretic

analysis of Gubser and Klebanov [3]. Consider the (Euclidean) partition function of a d-

dimensional CFT, in the presence of the double-trace deformation f
2O2, and with a source

J for the single-trace operator O,

Zf [J ] =

〈

exp

(

−
∫

f

2
O2 +

∫

JO
)〉

0

. (2.1)

Here 〈 . . . 〉0 denotes a correlator in the unperturbed CFT. In order for the deformation

to be relevant, the conformal dimension of O in the unperturbed theory is assumed to be

∆− ≡ d
2 − ν, with ν > 0. (Unitarity implies the lower bound ∆− ≥ d

2 − 1, or ν ≤ 1.) The

deformation parameter f has engineering dimension 2ν > 0 and we expect that f → ∞ in

the IR. In fact, the theory can be analyzed exactly in the large N limit, all along the RG
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flow, using a variant of the Hubbard-Stratonovich method. This consists of introducing an

auxiliary field σ, modifying the action as

S → S − 1

2f

∫

(σ + fO)2 . (2.2)

The additional term does not change the physics — the non-dynamical σ field can be

integrated out giving back the original theory. The partition function (2.1) can be written

as

Zf [J ] =
√

det(−f−11)

∫

Dσ

〈

exp

∫ (

σ2

2f
+ (J + σ)O

)〉

0

. (2.3)

Dropping subleading terms in 1/N ,

〈

exp

∫

(σ + J)O
〉

0

∼= exp

(

1

2

〈

(∫

(σ + J)O
)2

〉

0

)

. (2.4)

To write a closed form expression for Zf [J ] it is convenient to introduce the operator Ĝ,

defined in position space as the convolution with the (undeformed) two-point function of

O,

(Ĝσ)(x) =

∫

ddz 〈O(x)O(z)〉0 σ(z) =

∫

ddz
σ(z)

|x − z|2∆−
, (2.5)

and the operators

K̂f = 1 + fĜ , Q̂f =
Ĝ

1 + fĜ
. (2.6)

Clearly these kernels become diagonal in momentum space,

G(k) =

∫

ddk

(2π)d
eikx

x2∆−
= Aνk

−2ν , Aν ≡ 22νπd/2 Γ(ν)

Γ(d
2 + ν)

. (2.7)

and

Kf = 1 + fAνk
−2ν , Qf =

Aνk
−2ν

1 + fAνk−2ν
. (2.8)

With these notations in place, the path integral over σ gives

Zf [J ] =
1

√

det K̂f

exp

(∫

JQ̂fJ

)

. (2.9)

Hence in the presence of the deformation, the two point function is

〈O(x1)O(x2)〉f =
δ2 log Zf [J ]

δJ(x1)δJ(x2)

∣

∣

∣

∣

J=0

= Qf (x1, x2) . (2.10)

In the IR, where fG ≫ 1, we have

Qf (k) =
1

f
− 1

f2G(k)
+ · · · . (2.11)

In position space Qf=∞(x, 0) ∼ 1/x2∆+ , with ∆+ ≡ d
2 + ν. The double-trace deformation

triggers an RG flow that leads to a new IR fixed point; the dimension of O flows from ∆−

– 3 –
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in the UV to ∆+ in the IR. A simple manipulation of the generating functional (2.3), (2.4)

shows that the UV and IR large N CFTs are related by a Legendre transform [3].

Still following [3], to determine the central charge we can place the CFT on a d-sphere

of radius R and compute

c ≡
〈

∫

Sd
R

ddx
√

g T µ
µ

〉

=
1

d
R

∂

∂R
W [R] , W [R] ≡ log Z[J = 0, Sd

R] . (2.12)

(Note that for d = 4, this definition coincides — up to a universal numerical factor — with

what is usually called the “a” anomaly coefficient — the coefficient in front of the Euler

density in the expression for the trace anomaly T µ
µ in a curved background. Indeed the

other curvature invariant is the Weyl tensor, which vanishes on the conformally flat Sd
R.)

As usual in quantum field theory, the partition function is UV divergent. Introducing a

UV (momentum) cutoff Λ, by scale invariance we must have W = f(ΛR) = αd(ΛR)d +

αd−1(ΛR)d−1 + · · ·α0 log(ΛR) + · · ·. Equation (2.12) must be interpreted as valid for the

renormalized W [R] — in practice this means that we focus on the logarithmic divergence,

so that c ≡ α0/d. As is well-known, a non-zero anomaly can arise only for even d.

We are interested in finding

cIR − cUV =
1

d
R

∂

∂R
(Wf=∞[R] − Wf=0[R]). (2.13)

From the analysis with the auxiliary field method,

Wf1 [R] − Wf2[R] = −1

2
tr log

(

1 + f1Ĝ

1 + f2Ĝ

)

= −1

2
tr log

(

Q̂f2

Q̂f1

)

. (2.14)

The eigenvalues gl of Ĝ on Sd
R are calculated using an expansion in spherical harmonics,

G(x, x′) = 〈O(x)O(x′)〉0 =
∑

l,m

glY
∗
lm(x)Ylm(x′) , (2.15)

which gives [3]

gl = R2νπd/222ν Γ(ν)Γ(l + d
2 − ν)

Γ(d
2 − ν)Γ(l + d

2 + ν)
. (2.16)

Plugging this into (2.14), a fair amount of work still needs to be done to extract the

logarithmic divergence ∼ log(ΛR) and find the change in the central charge. The sum can

be calculated [3] with a zeta function regulator, which automatically gets rid of the power

law divergences in W . In the following, we will directly compare the change in the CFT

partition function (2.14) with the corresponding quantity in AdS space, so we will not need

to use anything beyond equations (2.14-2.16).

3. Bulk: mixed boundary conditions

If the unperturbed CFT has a dual description as a gravitational theory in AdSd+1, then

its deformation by f
2O2 has a simple holographic interpretation [1].
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Let us recall some basic facts about the AdS/CFT correspondence. We write the

Euclidean AdS metric as (the AdS scale is set to one)

ds2 =
1

r2

(

dr2 + A(r)gij(x)dxidxj
)

, (3.1)

where xi, i = 1, · · · d, parametrize the conformal boundary at r = 0 and A(r) → 1 as r → 0.

Popular choices are Poincaré coordinates r ≡ x0, 0 < x0 < ∞, A = 1, gij = δij , for which

the boundary is flat Rd, and hyperbolic coordinates r ≡ ρ, 0 < ρ ≤ 2, A(ρ) =
(

4−ρ2

4

)2
,

gijdxidxj = dΩd, for which the boundary is Sd. For a free scalar field of mass m, the

solution to the wave equation near the boundary r → 0 takes the form

φ(x, r) = r∆+ [α(x) + O(r2)] + r∆− [β(x) + O(r2)] , (3.2)

where we have defined

∆± =
d

2
± ν , ν =

√

d2

4
+ m2 . (3.3)

The Breitenlohner-Freedman bound [24] m2 ≥ −d2

4 is necessary for stability and ensures

that ∆± are real. For general masses, the field must be quantized with the boundary

condition β = 0, the so-called “regular” choice of boundary conditions. In the range

−d2

4 ≤ m2 < −d2

4 + 1 (equivalently 0 ≤ ν < 1), the “irregular” choice α = 0 is also

possible. This can be understood (in Lorentzian signature) from the fact that regular

solutions are always normalizable, while irregular solutions are normalizable only in this

restricted range of masses. With the regular choice of boundary conditions, we identify

β(x) with the source for an operator O in the boundary CFT – the CFT action has a term
∫

ddxβ(x)O(x). Under the scaling isometry r → λr, φ is invariant hence O has dimension

d − ∆− = ∆+. The function α is identified with the expectation value of the operator,

α = 〈O〉. The irregular choice of boundary conditions corresponds instead to identifying

α(x) as the source of the boundary operator and β as the vev [23]; then O has dimension

∆−. In going from the regular to the irregular boundary conditions, the roles of the source

and of the vev are reversed, and the generating functions of correlation functions of the

two theories are related by a Legendre transformation [23]. In section 5 we shall give a

direct proof of this fact.

In fact in the mass range −d2

4 ≤ m2 < −d2

4 + 1, a large class of boundary conditions

are possible, of the form α(x) = F [β(x)], where F is any real functional. For generic F the

AdS isometry group is not preserved. Witten [1] has interpreted these general boundary

conditions as a multi-trace deformation of the boundary CFT, of the form
∫

ddxW[O(x)],

with F [β] = δW
δβ . In the case of a double-trace deformation, W(O) = f

2O2, which leads to

the boundary conditions2

α(x) − f̃β(x) = 0 . (3.4)

2Here f̃ = const · f where the proportionality constant depends on the conventional normalization

of O and will be determined below. In section 2, we normalized O to have unit two-point function in

the unperturbed theory, see (2.5). This normalization differs from the one obtained by taking functional

derivatives with respect to the source α(x), which is the normalization implicit in Witten’s prescription.

This is why f → f̃ in (3.4).
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This dovetails perfectly with the field theoretic analysis of the previous section. In the

UV, f → 0 and the field is quantized with irregular boundary conditions, so that the dual

operator O has ∆− dimension; in the IR f → ∞ the regular boundary conditions are

approached and O has dimension ∆+.

3.1 A regulator

To make precise sense of the AdS/CFT prescription it is often necessary (see e.g. [25, 26])

to introduce an IR bulk regulator — which by the UV/IR connection plays the role of a

boundary UV regulator. We cut off the infinite volume of AdS space by restricting the

radial coordinate to r ≥ ǫ > 0, and setup the boundary value problem on the surface r = ǫ.

Let us see how to write the boundary conditions (3.4) in the presence of this cutoff.3

The action for a scalar field is

S =

∫

ddxdr
√

g

(

1

2
(∂φ)2 +

1

2
m2φ2

)

+

∫

ddx
√

gLbdry|r=ǫ . (3.5)

Varying the field, we find upon integrating by parts and using the bulk equations of motion,

δS =

∫

ddx
√

g [δφ ∂φ · n̂ + δLbdry]r=ǫ , (3.6)

where n̂ = ǫr̂ is the unit vector specifying the normal to the boundary. In order for the

variational problem to be well-defined, we must choose the boundary condition for the

field to cancel the contribution of the boundary term in the action. To reproduce the

deformation f
2O2 added to the CFT, we choose the boundary term

Lbdry =
1

2
γφ2 , (3.7)

which dictates the mixed Neumann/Dirichlet boundary conditions4

γ φ(x, ǫ) + ∂φ(x, ǫ) · n̂ = 0 . (3.8)

Now we must relate f to γ. To this end, we are going to compute the two-point function

using the AdS/CFT prescription and compare it with the field theoretic result of the

previous section. In AdS/CFT, we are instructed to evaluate the on-shell bulk action as a

functional of the boundary source φb(x) [27, 28]. For our mixed boundary conditions, the

appropriate boundary value problem is

(¤ − m2)φ(x, r) = 0

γ φ(x, ǫ) + ∂φ(x, ǫ) · n̂ = φb(x) . (3.9)

Plugging the solution of (3.9) back into the action and integrating by parts,

Son−shell[φb] =
1

2

∫

ddx
√

g [φ(x, r)(∂φ(x, r) · n̂ + γφ(x, r)]|r=ǫ

=
1

2

∫

ddx
√

g φ(x, ǫ)φb(x) . (3.10)

3See also the closely related discussion in [5, 9].
4For all γ, Dirichlet conditions δφ = 0 are also consistent, but we choose to impose (3.8).
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To obtain an explicit solution, let us specialize to Poincaré coordinates,

ds2 =
1

x2
0

(dx2
0 + dxidxi) , x0 ≥ ǫ , (3.11)

and Fourier transform with respect to the flat boundary coordinates, xi → ki, i = 1, · · · d,

φ(xi, x0) =
1

(2π)d/2

∫

ddk eikixi φ(ki, x0) . (3.12)

The wave equation reads
[

−xd+1
0

∂

∂x0

(

x−d+1
0

∂

∂x0

)

+ k2x2
0 + m2

]

φ(k, x0) = 0 (3.13)

with k =
√

kiki . As is well-known (see e.g. [27, 25]), the unique solution that is regular

for x0 → ∞ is

ψ(k, x0) ≡ x
d/2
0 Kν(kx0) , (3.14)

where Kν is the Bessel function. Thus the solution of the boundary value problem (3.9) is

φ(k, r) =

(

ψ(k, r)

γ ψ(k, ǫ) + ∂ψ(k, ǫ) · n̂

)

φb(k) (3.15)

and the AdS/CFT dictionary yields the CFT correlator

〈O(k)O(k′)〉 = −δ2Son−shell[φb]

δφb(k)δφb(k′)

∣

∣

∣

∣

φb=0

(3.16)

= −ǫ−dδd(k + k′)

(

ψ(k, ǫ)

γ ψ(k, ǫ) + ∂ψ(k, ǫ) · n̂

)

.

Using the expansion of Kν(z) = z−ν [2−1+νΓ(ν)+O(z2)]+ zν [2−1−νΓ(−ν)+O(z2)], we can

extract the leading behavior of the two point function as ǫ → 0,

〈O(k)O(k′)〉γ = − ǫ−dδd(k + k′)

γ + ∆− +
(

ǫ2ν2−2ν Γ(−ν)
Γ(ν) (2ν)

)

k2ν + O(ǫ2)
. (3.17)

Notice that in the mass range that we are considering, ν < 1 and the term O(ǫ2) can

indeed be neglected. On the other hand, the two-point function was computed directly in

the boundary CFT using the auxiliary field method,

〈O(k)O(k′)〉f = δd(k + k′)Qf (k) = δd(k + k′)
Aν

fAν + k2ν
. (3.18)

The two expressions coincide (up to an overall k-independent normalization that can be

fixed by rescaling the source φb(x)), provided we identify

γ = −∆− − fǫ2ν

(

2πd/2 Γ(1 − ν)

Γ (∆−)

)

. (3.19)

As f → ∞, we find that γ → ∞, and recover the Dirichlet boundary value problem at

x0 = ǫ, which is indeed the usual prescription for the “regular” ∆+ quantization. We see

– 7 –
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that the “irregular” ∆− quantization (f = 0) corresponds to the specific choice γ = −∆− in

the boundary conditions (3.4). This can be understood by the following simple argument.

The irregular boundary conditions consists of identifying the subleading term α(x) in the

boundary expansion of φ as the source for O. Now the boundary source at r = ǫ is

φb(x) = γφ(x, ǫ) + ǫ∂rφ(x, r)|r=ǫ (3.20)

= ǫ∆− [(γ + ∆−)β(x) + O(ǫ2)] + ǫ∆+ [(γ + ∆+)α(x) + O(ǫ2)] ,

and indeed to cancel the dependence from the leading term β we must choose γ = −∆−.5

In summary, the double-trace deformation
∫ f

2O2 of the boundary CFT corresponds to

imposing mixed Neumann/Dirichlet boundary conditions (3.8) for the dual scalar field φ,

with γ and f related by (3.19). These boundary conditions become more transparent in

terms of the field χ introduced in [23], locally related to φ as

φ(xi, x0) ≡ x
∆−

0 χ(xi, x0) . (3.21)

Then ∆− quantization corresponds precisely to Neumann boundary conditions for χ,

∂

∂x0
χ = 0 , (3.22)

while, of course, ∆+ quantization corresponds to Dirichlet conditions.

General multitrace deformations
∫

ddxW[O(x)] could be treated similarly, by taking

Lbdry = W(φ).

4. Relating the bulk and boundary partition functions

We are now going to show that the change in the partition function W induced by the

double trace deformation is manifestly identical on both sides of the correspondence. In

AdS, we look at the variation of the partition function for a scalar field of mass m as we

change boundary conditions,

WAdS
γ1

− WAdS
γ2

= −1

2
Trγ1 log(−¤ + m2) +

1

2
Trγ2 log(−¤ + m2) . (4.1)

The trace “Trγ” is over the bulk modes that obey the boundary conditions (3.19). Sepa-

rating the AdS coordinates into a radial coordinate and d coordinates parametrizing the

boundary, we can also write

WAdS
γ1

− WAdS
γ2

= −1

2
tr log

(

detγ1(−¤ + m2)

detγ2(−¤ + m2)

)

, (4.2)

where the trace “tr” is over the boundary modes only, and the determinant detγ is the

product of eigenvalues of the radial wave-equation with γ boundary conditions. Here

5Incidentally, we can also determine the relation between f and the parameter f̃ introduced in (3.4).

Substituting (3.19) in (3.20) and setting φb = 0, α = f̃β, we find f̃ = πd/2Γ(1−ν)
νΓ(∆

−
)

f , in agreement with [3].

We will not need this relation in the following.
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“(−¤ + m2)” is a short-hand for the radial differential operator, which depends on the

eigenvalue of the boundary Laplacian. For example, in Poincaré coordinates, it is the

second-order differential operator in x0 given in (3.13), which depends on the boundary

momentum k.

The corresponding quantity in the dual CFT is (2.14)

WCFT
f1

− WCFT
f2

= −1

2
tr log

(

1 + f1G

1 + f2G

)

. (4.3)

Equating the change in the central charge on both sides of the AdS/CFT correspondence

thereby reduces to confirming that

detγ1(−¤ + m2)

detγ2(−¤ + m2)
=

1 + f1G

1 + f2G
=

Qf2

Qf1

. (4.4)

This will be our task for the rest of the section.

4.1 One-dimensional determinants

Fortunately, the ratio of one-dimensional determinants that appears in (4.4) belongs to a

well studied class of problems. As a paradigmatic example, consider the two differential

operators in one dimension

Q = − d2

dx2
+ RQ(x) (4.5)

P = − d2

dx2
+ RP(x) . (4.6)

The problem is to find the ratio of functional determinants

det(Q− λ)

det(P − λ)
, (4.7)

in the space of (square-integrable) functions F = {f(x)}, x ∈ [a, b], that satisfy specific

boundary conditions — for simplicity let us say Dirichlet boundary conditions f(a) =

f(b) = 0. This problem has an elegant solution. Define the functions qλ and pλ to be

eigenfunctions of the two operators,

Qqλ = λqλ (4.8)

Ppλ = λpλ

with the boundary conditions

q(b) = 0 q′(b) = 1 (4.9)

p(b) = 0 p′(b) = 1 .

Notice that in general qλ and pλ do not belong to F . Then

det(Q− λ)

det(P − λ)
=

qλ(a)

pλ(a)
. (4.10)

– 9 –
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In his famous lectures on instantons [29], Coleman gives the following heuristic proof of

this equation. Viewed as complex functions of λ, both sides of the equation have the

same poles and zeros. This is the case because for all λ, qλ satisfies one of the boundary

conditions, q(b) = 0; if it also satisfies the other boundary condition qλ(a) = 0, then qλ is

an eigenfunction of Q in F and thus Q− λ has vanishing determinant. The same applies

to p and P. Both sides of the equation also have the same limiting behavior as λ → ∞, so

they must in fact be the same function.

In [30, 31], a rigorous proof is given of a more general theorem. Formulas analogous

to (4.10) allow us to compute ratios of functional determinants for general Sturm-Liouville

operators of the type

Q = − d

dx

(

SQ(x)
d

dx

)

+ RQ(x) (4.11)

P = − d

dx

(

SP(x)
d

dx

)

+ RP(x) ,

acting on the space of functions with some prescribed mixed Neumann/Dirichlet boundary

conditions at the extrema. Consider for definiteness the space of functions Fγ with Dirichlet

conditions at x = b and mixed boundary conditions at x = a,

f(a) = 0

γf(a) + f ′(a) = 0 .

Since the boundary conditions are parametrized by γ, we will denote the resulting determi-

nant by detγ . If qλ and pλ are defined again as in (4.8), (4.9), then provided that SQ = SP

one has [31]
detγ Q
detγ P

=
γq(a) + q′(a)

γp(a) + p′(a)
, (4.12)

where we have relabelled q ≡ qλ=0, p ≡ pλ=0.

One final complication is that in this formula, the same choice of γ must appear in both

determinants, while the two operators P and Q are different. To check equation (4.4), we

need to compute a ratio of determinants where the operators are the same but the boundary

conditions are different. The obvious guess in this case is

detγ1 P
detγ2 P

=
γ1p(a) + p′(a)

γ2p(a) + p′(a)
, (4.13)

which has the correct poles and zeros. We will prove this formula by generalizing the proof

given in [31]. The zeta function of the differential operator P is defined as usual,

ζPγ (s) =
∑

λ

λ−s , (4.14)

where the sum is over eigenvalues of P, and we have added a label γ to denote the bound-

ary condition explicitly. Knowledge of the ζ function allows of course to compute the

determinant, since ζ ′P(0) = − log detP. The basic observation is that we can write

ζPγ1
(s) − ζPγ2

(s) =
1

2πi

∫

dλλ−s d

dλ
log

γ1pλ(a) + p′λ(a)

γ2pλ(a) + p′λ(a)
. (4.15)
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�������� ������������

Branch cut

λ

Figure 1: The contour and branch cut in eq. (4.15) [31].

Indeed λ is an eigenvalue of Pγ if and only if the function γpλ(a) + p′(λ) has a zero;

correspondingly its logarithmic derivative d
dλ log[γpλ(a)+p′λ(a)] has a pole with unit residue

and the contour integration in the complex λ plane reproduces the definition (4.14). The

contour of integration is shown in figure 1. The branch cut for λ−s is placed at an angle θ

from the positive real λ axis. As it stands, this definition is meaningless at s = 0. The goal

is to deform the contour to enclose the branch cut, and obtain an expression that extends

to a region around s = 0. If the integrand behaves as

d

dλ
log

γ1pλ(a) + p′λ(a)

γ2pλ(a) + p′λ(a)
= O

(

1

λ3/2

)

(4.16)

as ℑ
√

λ → ±∞, then the contour can be deformed and the resulting integral is well

defined for −1/2 < s < 1. Differentiating (4.15) with respect to s and setting s = 0 gives

exactly (4.13), completing the proof. (See [31] for a careful analysis of the case (4.12)).

The assumption (4.16) can be checked for any particular case; we will show below that it

holds in our case.6

6In [31], the analogous asymptotic behavior for the case (4.12) was argued to hold for general Sturm-

Liouville operators Q and P . In our case, although P is not of Sturm-Liouville type, we will be able to

check (4.16) explicitly.
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4.2 Relating the partition functions

We are now in a position to verify equation (4.4). We apply the formula (4.13) with P =

“(−¤ + m2)” the radial differential operator. The left extremum is taken r = a = ǫ, while

the right extremum is taken to correspond to the “deep interior” of AdS — for example

x0 = ∞ in Poincaré coordinates and ρ = 2 in hyperbolic coordinates. We immediately

have
detγ1(−¤ + m2)

detγ2(−¤ + m2)
=

γ1p(ǫ) + ǫp′(ǫ)

γ2p(ǫ) + ǫp′(ǫ)
, (4.17)

where p is the solution of the radial wave equation obeying Dirichlet boundary conditions

in the interior of AdS. For example in Poincaré coordinates, p(k, x0) = ψ(k, x0) as defined

in (3.14). Using the identity
p(ǫ)

γp(ǫ) + ǫp′(ǫ)
= Qf , (4.18)

which was shown to hold in section 3 (see (3.16) and below7), we have finally

detγ1(−¤ + m2)

detγ2(−¤ + m2)
=

Qf2

Qf1

. (4.19)

It follows that the change in the partition function of the AdS theory is identical to that

of the CFT, term by term in a sum over boundary modes.

4.3 Explicit analysis: Poincaré coordinates

To clarify the discussion above in generic coordinates, we will demonstrate the construction

explicitly in Poincaré coordinates,

ds2 =
1

x2
0

(dx2
0 + dx2) . (4.20)

The change in the CFT effective potential from equation (2.14) is

∆V CFT = −1

2

∫

ddk

(2π)d
log(1 + fgk) (4.21)

where gk is the eigenvalue of the CFT propagator. Using

〈O∆(x)O∆(y)〉 =
1

|x − y|2∆ (4.22)

=

∫

ddk

(2π)d
e−ik(x−y)gk (4.23)

we find

gk = k−2νπd/2 22ν

ν

Γ(1 + ν)

Γ(d/2 − ν)
. (4.24)

The change in the AdS effective potential as we switch from irregular to regular modes

is given by equation (4.2) with γ1 → ∞, γ2 = −∆−.

7The argument below (3.16) was phrased for definiteness in Poincaré coordinates, but the conclusion is

clearly general.
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To evaluate the ratio of determinants using eq. 4.13, we must first analyze the large ν

behavior of
γ1qλ(a) + ǫq′λ(a)

γ2qλ(a) + ǫq′λ(a)
(4.25)

with qλ(y) = yd/2Kν(ky). (In this case, the roots in the integrand of the zeta function

lie on the imaginary axis, so we must check that the large ℜν behavior is no worse than

O(λ−3/2).) Using the fact that Kν+1(x)/Kν(x) → 2ν/x as ν → ∞, we find

d

dλ
log

γ1qλ(a) + ǫq′λ(a)

γ2qλ(a) + ǫq′λ(a)
=

a(γ1 − γ2)

ǫ

(

1

ν2

)

+ O
(

1

ν3

)

(4.26)

This confirms assumption (4.16). Finally, plugging into eq. (4.13) and substituting f for

γ, we find precisely the answer we found for ∆V CFT in equation (4.21). This completes

the demonstration in Poincar ’e coordinates that

∆V AdS = ∆V CFT . (4.27)

4.4 Explicit analysis: hyperbolic coordinates

To make contact with the results of [2] and [3], we now perform an explicit analysis in

hyperbolic coordinates, where the boundary of AdS is a sphere. The metric is

ds2 =
dρ2

ρ2
+

(

4 − ρ2

4ρ

)2

dΩ2
d . (4.28)

Expanding in spherical harmonics

φ(ρ,Ω) =
∑

l,m

Ylm(Ω)φl(ρ) , (4.29)

the radial wave equation reads

[

ρ2 ∂

∂ρ2
+ ρ

∂

∂ρ
+ dρ

ρ2 + 4

ρ2 − 4

∂

∂ρ
− l(l + d − 1)

(

4ρ

4 − ρ2

)2
]

φl(ρ) = 0 . (4.30)

The unique solution regular in the “deep interior ” at ρ = 2 is

pl(ρ) =

(

4 − ρ2

4ρ

)l

F

(

l + ∆+, l + ∆−, l +
d

2
+

1

2
;−(ρ − 2)2

8ρ

)

. (4.31)

Notice that pl is zero at ρ = 2 together with its first l − 1 derivatives. The boundary

conditions at the right extremum b = 2 are taken to be

pl(b) = 0 ,
dlpl(b)

dρl
=

l!

(−2)l
. (4.32)

This is an inessential modification of the condition (4.9).

Expanding near the boundary,

pl(ǫ) ≈ al ǫ
∆+ + blǫ

∆− , (4.33)
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Rnumerical Ranalytical

Point A: γ1 = 1 , γ2 = 10 -0.0336349 -0.0336350

Point B: γ1 = 10 , γ2 = 100 0.0882113 0.0882118

Table 1: Comparison of numerical and analytical computations of (4.37). The analytical results

were computed using eq. (4.13). The numerical results were found by computing approximately

30000 eigenvalues for each operator and extrapolating to n → ∞. In all cases, d = 4, l = 3,

ǫ = 10−4, and m2 = −3.5.

where

al =
2l−1+∆−Γ

(

l + d
2 + 1

2

)

Γ
(

∆− − d
2

)

√
πΓ(l + ∆−)

, bl =
2l−1+∆+Γ

(

l + d
2 + 1

2

)

Γ
(

∆+ − d
2

)

√
πΓ(l + ∆+)

.

(4.34)

It is then straightforward to check that the ratio of determinants

detγ1(−¤ + m2)

detγ2(−¤ + m2)
=

γ1pl(ǫ) + ǫp′l(ǫ)

γ2pl(ǫ) + ǫp′l(ǫ)
(4.35)

agrees exactly with the expected CFT answer on Sd

1 + f1gl

1 + f2gl
, (4.36)

where gl is the eigenvalue of the boundary Laplacian, (2.16). To be precise, we find the CFT

answer on a d-sphere with R = 1/ǫ, which is as expected since in writing the hyperbolic

coordinates (4.28) we have normalized the boundary metric as dΩ2
d/ǫ

2.

We have also performed numerical checks of our method for computing determinant ra-

tios, in both Poincaré and hyperbolic coordinates . In hyperbolic coordinates, the boundary

condition φl(ρ = 2) = 0 selects (4.31) rather than the other solution to the hypergeometric

equation, which blows up at ρ = 2. The boundary condition γφl(ǫ) + ǫφ′
l(ǫ) = 0 then

quantizes ν, giving a discrete set of eigenvalues that are multiplied together to compute

the determinant. The determinants are infinite but their ratios are finite, converging after

a few thousand eigenvalues.

As an example, we compare the numerical and analytical results for two different

choices of γ1, γ2 in table 1. Figure 2 shows a Mathematica plot of the convergence of

R ≡ detγ1(−¤ + m2)

detγ2(−¤ + m2)
(4.37)

for Point B. The horizontal axis is the number of eigenvalues n included in the computation,

and the flat line is the analytical answer obtained from the boundary value trick. The

numerical solution approaches the analytical solution like 1/n. For each set of parameters,

the numerical solution in table 1 was obtained by fitting the curve to a power law and

extrapolating to n → ∞.
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0.16
R

# roots

Figure 2: Numerical value of R in eq. (4.37) versus the number of roots included in the computa-

tion. The curve converges nicely to the horizontal line (the analytical answer).

5. ∆
−

boundary conditions and 1PI diagrams

The auxiliary field trick was used in [3] to show that in the large N boundary theory,

the generating functional WIR[J̃ ] at the IR fixed point is the Legendre transform of the

generating functional WUV[J ] at the UV fixed point (see [19] for a recent discussion).

This agrees with the recipe postulated by Klebanov and Witten [23] for the evaluation

of AdS/CFT correlators with ∆− boundary conditions: namely one is instructed to first

evaluate the correlators with ∆+ boundary conditions, using the standard algorithm, and

then to perform a Legendre transform with respect to the source J̃ for the operator O∆+ .

While this is a consistent state of affairs, it would be more satisfactory to treat the two

boundary conditions on a more symmetric footing, and have an intrinsic algorithm that

directly computes AdS/CFT correlators with ∆− boundary conditions.

Actually, we have already stated such an algorithm in section 3: evaluate the on-

shell bulk action as a functional of the boundary source φb ≡ J of eq. (3.9), imposing

the mixed boundary condition with γ = −∆−. In section 3 we were dealing with two-

point functions, and thus restricting to the quadratic part of the action. For higher point

function, we proceed in the standard way [27, 28], treating the interactions perturbatively,

and computing AdS/CFT correlators as sums of diagrams built with bulk-to-boundary

propagators, bulk-to-bulk propagators and bulk vertices (see e.g. [32]). Our algorithm is

simply stated: use the propagators appropriate to ∆− boundary conditions, and otherwise

proceed as usual.

Let us take a closer look at the propagators, contrasting regular and irregular boundary

conditions. It will be convenient to work in momentum space. The bulk-to-boundary
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propagators for ∆+ and ∆− are given by (3.15), respectively with γ = ∞ and γ = −∆−,

P∆+(k) =
ψ(k, x0)

ψ(k, ǫ)

ǫ→0−→ 21−ν

Γ(ν)
(ǫk)ν xν

0Kν(kx0) , (5.1)

P∆−
(k) =

ψ(k, x0)

−∆−ψ(ǫ, k) + ǫ ∂ψ(k, ǫ)

ǫ→0−→ 21+ν

2νΓ(−ν)
(ǫk)−ν xν

0Kν(kx0), (5.2)

where we have reabsorbed the prefactor of 1/γ → 0 in P∆+ in a redefinition of the source.

The two propagators have the same functional form in x0. This is bound to happen since

there is a unique solution of the wave equation regular in the interior. They differ however

by an important k dependent factor,

P∆+(k)

P∆−
(k)

∼ k2ν . (5.3)

The bulk-to-bulk propagators are

G∆+(k;x0, y0) = (x0y0)
d/2Iν(kz<

0 )Kν(kz>
0 ) (5.4)

G∆−
(k;x0, y0) = (x0y0)

d/2I−ν(kz<
0 )Kν(kz>

0 ) , (5.5)

where z<
0 is the smaller of the radial coordinates x0, y0 and z>

0 is the larger.8 We observe

that their difference takes the factorized form

G∆+(k, x0, y0) − G∆−
(k, x0, y0) = −2 sin(πν)

π
(x0y0)

d/2Kν(kx0)Kν(ky0) . (5.6)

It is not immediately obvious that exchanging ∆+ with ∆− propagators is equivalent

to the Legendre transform recipe stated above. We are now going to show that this is the

case. We will briefly illustrate our claim for 4pt functions — it is easy to fill in the details

and generalize the argument to arbitrary n-point functions. As is familiar, the Legendre

transform of the generator of connected correlation functions is the generator of one particle

irreducible (1PI) correlation functions, with external legs amputated. We use the following

diagrammatic notation for the action of the Legendre transform on a 4pt function,9

L





� 




=� (5.7)

8For simplicity, we have written the expressions of the bulk-to-bulk propagators in the limit ǫ → 0.

This is legitimate in most cases. For special correlators (for example extremal correlators [33]), if one is

interested in their exact normalization, it may be necessary to use the more cumbersome expressions with

finite ǫ and take the limit ǫ → 0 at the end of the calculation.
9Of course, we are taking the Legendre transform of a generating functional, not of a single correlator.

What we mean by the Legendre transform of a 4pt function is actually the fourth functional derivative of

the Legendre-transformed generating functional.
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Black dots represent connected correlators and hatched dots represent 1PI correlators. The

connected 4-point function can be expanded with 1PI vertices and full propagators,

� =� +

�
+ crossed diagrams . (5.8)

Therefore we can take the Legendre transform of a correlator by subtracting reducible parts

and removing the external legs,

L





� 




=

























� −

�
− crossed

























(� )−4
. (5.9)

On the other hand, AdS diagrams are drawn in the usual way, with a circle on the outside

that represents the boundary. The statement of the AdS/CFT correspondence is

�O 1 O 2

O 3 O 4

= �∆2

∆1

∆4

∆3

∆+∆+
+ crossed diagrams + · · · (5.10)

The dots stand for diagrams without explicit dependence on the field dual to O∆+ . Here

it is understood that the AdS diagrams on the rhs are built with propagators obeying

the “regular” (Dirichlet) boundary conditions. We wish to show that taking the Legendre

transform is equivalent to using instead the “irregular” propagators. The external operators

O∆i
, i =, 1 . . . , 4 need not be the same as O∆+ . Let us first assume for simplicity that they

are all different from O∆+ . We are then instructed to take the Legendre transform with

respect to the source of O∆+ , leaving the operators O∆i
unchanged. The identity (5.9),

where external legs are removed on the right-hand side, assumed that only a single operator

was involved so all of the external legs belonged to that operator. In the present case, the
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proper prescription is to leave the external legs intact. Diagrammatically, the statement is

L











 �O 1 O 2

O 3 O 4













= �O 1 O 2

O 3 O 4

− �
O 1 O 2

O 3 O 4

O∆+ − crossed (5.11)

In the second diagram on the rhs, the internal wavy line with a small black dot represents

the O∆+ 2pt correlator, 〈O∆+(k)O∆+(k)〉 ∼ k2ν , while the external solid lines with little

black dots are the 2pt correlators of the O∆i
operators. In momentum space the second

diagram can be also be written

















�
O 1

O 2

O∆+



































�
O 3

O 4

O∆+



















(

�O∆+
)−1

. (5.12)

Translated into AdS language, this says (we are being a little schematic and dropping

constant factors)

L











 �∆2

∆1

∆4

∆3

∆+∆+













= �∆2

∆1

∆4

∆3

∆+∆+
(5.13)

− k−2ν

















�∆2

∆1

∆+ �∆4

∆3

∆+

















.

We need to show that the right-hand side of (5.13) is actually equal to the exchange

diagram with a bulk ∆− propagator, so that

L











 �∆2

∆1

∆4

∆3

∆+∆+













= �∆2

∆1

∆4

∆3

∆−∆−
. (5.14)
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Indeed, let us evaluate the difference of exchange diagrams with regular and irregular

boundary conditions,

�∆2

∆1

∆4

∆3

z w
∆+∆+ − �∆2

∆1

∆4

∆3

z w
∆−∆−

, (5.15)

whose analytic expression is
∫

dz0

zd+1
0

∫

dw0

wd+1
0

P∆1(~p1, z0)P∆2(~p2, z0)P∆3(~p3, w0)P∆4(~p4, w0)

×[G∆+(~k, z0, w0) − G∆−
(~k, z0, w0)] . (5.16)

Using (5.6), the integrand is proportional to

P∆1(~p1, z0)P∆2(~p2, z0)P∆3(~p3, w0)P∆4(~p4, w0)[z
d/2
0 Kν(kz0)w

d/2
0 Kν(kw0)] . (5.17)

The difference between the bulk propagators (the term in brackets) is seen to be identical

to product of two bulk-to-boundary propagators P∆+ , missing the factors of kν , so we have

found

�∆2

∆1

∆4

∆3

∆+∆+
− �∆2

∆1

∆4

∆3

∆−∆−
=

k−2ν











 �∆2

∆1

∆+ �∆4

∆3

∆+













(5.18)

Comparing to (5.13), this completes the proof of (5.14).

Finally, let us consider the case where some of the external operators O∆i
are also equal

to O∆+ . In taking the Legendre transform, we are now further instructed to amputate each

external leg involving a O∆+ , see (5.9). In momentum space, this amounts to removing

factors of 〈O∆+(ki)O∆+(−ki)〉 ∼ k−2ν
i for each external momentum ki corresponding to a

boundary insertion of O∆+ . But this is exactly equivalent to changing boundary conditions

for the bulk-to-boundary propagators, P∆+(ki) → P∆−
(ki)! This concludes the argument

that correlation functions computed with ∆− propagators are precisely the Legendre trans-

form of correlations functions computed with ∆+ propagators.
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A. One-loop effective potential in AdS

The change in the central charge of the bulk theory was computed by Gubser and Mitra [2].

We will review the computation here, using a different method to regulate the infinities

but otherwise following their calculation.

We are interested in the one-loop AdS effective action,10

W = − i

2
Tr log(−¤ + m2) . (A.1)

Taking the derivative of this expression,

∂W

∂m2
=

i

2
Tr

(

1

−¤ + m2

)

. (A.2)

Therefore the logarithm in the effective action can be written as an integral,

W = − i

2
Tr

∫

dm2G (A.3)

where G is the scalar propagator, defined as the inverse of the wave operator. The trace

is an integral
∫

dd+1x
√

g over the AdS bulk. The maximal symmetry of AdS implies that

G(x, x) is independent of x, so that the trace contributes only the overall AdS volume

VolAdS. We can then define the effective potential V (m2) as

V (m2) ≡ W (m2)

Vol(AdS)
= − i

2

∫ ∞

m2

dm̃2G(x, x; m̃2) . (A.4)

A more rigorous derivation using the DeWitt-Schwinger representation of the propagator

is given in [34], section 6.1.

Generally, both the integrand and the integral over m̃2 are divergent. Since we are

only interested in the change in the effective potential, we can regulate the UV divergence

in the integrand by computing the difference in V going from regular (+) to irregular (−)

boundary conditions,

V+ − V− = − i

2

∫ ∞

m2

dm̃2
(

G∆̃+
(x, x) − G∆̃−

(x, x)
)

. (A.5)

The integral, however, still diverges. To regulate it, the authors of [2] split the integral into

two parts,

V+(m2)−V−(m2) =
i

2

∫ m2

m2
BF

dm̃2(G∆̃+
(x, x)−G∆̃−

(x, x))+[V+(m2
BF )−V−(m2

BF )] . (A.6)

10In this appendix we adopt Lorentzian signature.
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The integral is finite. The second term is the change in the effective potential for a field

with mass saturating the Breitenlohner-Freedman bound m2
BF L2 = −d2/4. This is the

lowest mass for which a scalar field can be quantized consistently on AdS, and corresponds

to a boundary operator with scaling dimension ∆ = d/2.

It seems reasonable to expect that the change in the effective potential to vanish at

the BF bound, leaving only the finite terms in equation (A.6). A heuristic argument is as

follows [2]. The expression for the mode-sum vacuum energy in the Hamiltonian formalism

is

Evac =
1

2

∑

k

ωk . (A.7)

For a scalar field, the mode frequencies in global AdS coordinates are ω = l + 2n + ∆±

(see e.g. [35]). Therefore, at the BF bound where ∆+ = ∆−, regular and irregular modes

contribute equally to the vacuum energy. Thus we have E+
vac(m

2
BF ) − E−

vac(m
2
BF ) = 0.

However, there is a potential loophole in this argument: the quantity E+
vac − E−

vac cannot

necessarily be identified with the change in the effective potential V+ − V−. These two

quantities are equal in flat space, but they can be different in curved space if the gtt

component of the metric is non-trivial (see e.g. [36]). They are in fact different in our case,

as can be verified by performing the sum explicitly with an exponential or zeta-function

regulator.

Therefore, we will use a different method that allows us to compute V directly

from (A.5). We work in global coordinates,

ds2 = L2
[

− sec2 ρ dt2 + sec2 ρ dρ2 + tan2 ρ dΩ2
d−1

]

. (A.8)

We begin by writing the scalar propagator as a mode-sum,

iG∆±
(x, x′) = θ(x, x′)

∑

n,l,m

Ψ
∆∗

±

nlm(x)Ψ
∆±

nlm(x′) + θ(x′, x)
∑

n,l,m

Ψ
∆∗

±

nlm(x′)Ψ
∆±

nlm(x) , (A.9)

where the sum is over all normalized modes of the scalar field and θ(x, x′) is the AdS

time-ordering operator. Note that the modes are taken on-shell, ω = l + 2n + ∆±. This is

easily seen to be a valid propagator by applying the wave operator −¤ + m2. Acting on

the θ-functions gives a delta function δ(x − x′), and the equation of motion for Ψ
∆±

nlm gives

zero for x 6= x′.

Plugging in the scalar modes (from e.g. [35]), we have

iG∆(x, x′) =
∑

n,l,m

N2
∆e−iω(t−t′)Ylm(Ω)Ylm(Ω′)(sin ρ)l(cos ρ)∆(sin ρ′)l(cos ρ′)∆

×P (l+d/2−1,∆−d/2)
n (cos 2ρ)P (l+d/2−1,∆−d/2)

n (cos 2ρ′) , (A.10)

where N2
∆ is a normalization constant that can be computed from the scalar inner product

and P a,b
n is a Jacobi polynomial. The maximal symmetry of AdS allows us translate to

x′ = 0, considerably simplifying the sum by ensuring that only l = 0 , m = 0 modes will

contribute. All other terms are zero by virtue of the (sin ρ′)l factor. Y00(Ω) is constant and
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normalized on the sphere Sd−1, so the propagator is

iG∆(x) =
(cos ρ)∆

Vol(Sd−1)

∞
∑

n=0

N2
∆P (d/2−1,∆−d/2)

n (1)P (d/2−1,∆−d/2)
n (cos 2ρ)e−i(2n+∆)t . (A.11)

This can be summed to give the usual expression for the propagator in global coordinates.

To regulate the coincidence limit of (A.9), which does not depend on x, we set ρ = ρ′ and

Ω = Ω′ but maintain t 6= t′ until the very end. After interchanging the order of the limit,

sum, and integral, this gives

V (m2) = − lim
t→0

1

4Ldπd/2Γ(d
2)

∞
∑

n=0

∫ ∞

ν2

dν̃2 Γ(n + d
2)Γ(n + d

2 + ν̃)

Γ(n + 1)Γ(n + 1 + ν̃)
e−i(2n+ d

2
+ν̃)t . (A.12)

Everything but the final limit is finite. To regulate the t → 0 divergence, we expand the

answer as a power series in t and take the difference V+ − V− before taking the limit. The

result is finite.

For even d, the integral is simple and we obtain the following:

• d = 2 : V+ − V− = − ν3

6πL2

• d = 4 : V+ − V− =
1

12π2L4

(

−ν3

3
+

ν5

5

)

• d = 6 : V+ − V− =
1

120π3L6

(

−4

3
ν3 + ν5 − ν7

7

)

• d = 8 : V+ − V− =
1

1680π4L8

(

−12ν3 +
49

5
ν5 − 2ν7 +

ν9

9

)

These results agree with [2], thereby confirming their a priori assumption that V+(m2
BF ) =

V−(m2
BF ). They are also compatible with the calculation in [37] of the (Euclidean) one-

loop effective potential by zeta-function regularization, if one assumes that we can obtain

V− by simply replacing ∆+ → ∆− in the final expressions for V+ quoted in [37].
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